- New research shows the W boson—a tiny particle fundamental to the formation of our universe—is heavier than scientists expected.
- This discovery goes against the Standard Model of particle physics, the framework scientists use to make sense of all observable matter.
- The 400-person team carefully sifted through 10 years' worth of data from more than four million collisions in a Fermilab particle accelerator.
The W boson, one of the tiniest, most elementary particles in the known universe is causing a big ruckus in the field of particle physics.
New findings about the particle, which is fundamental to the formation of the universe, suggest its mass may be far heavier than predicted by the Standard Model of particle physics—the theoretical "rulebook" that helps us make sense of the building blocks of matter. If true, it could signal a monumental shift in our understanding of the universe.
According to the Standard Model, W bosons (together with another particle, called Z bosons) are responsible for the weak nuclear force, one of the four forces that hold together all observable matter in the universe. The other forces include gravitational force (for which there is currently no explanation in the Standard Model), electromagnetic force, and the strong nuclear force.
Gravitational and electromagnetic forces work across large scales. Think: the sun's hold over distant planets, or the journey light from far-off stars makes across the universe. Weak and strong nuclear forces, however, interact with the tiniest objects in our universe and occur only within the nuclei of atoms. (Coincidentally, these are the forces responsible for generating radioactivity.)
The weak nuclear force is particularly important. It is responsible for, among other things, the process through which the sun forms helium from hydrogen, and is critical to the formation of our universe. "If it wasn't for this force, none of the heavy elements beyond hydrogen would form," Ashutosh Kotwal, a physicist at Duke University and one of the leaders of the experiment, tells Popular Mechanics. "It is crucial to our existence."
Scientists first predicted the W boson in the 1960s, but it wasn't until 1983 that a team of researchers at CERN (the European Council for Nuclear Research) proved its existence. (Both teams won Nobel Prizes for their work on the particle.) Since then, research teams have sought to precisely identify the mass of the W boson, a critical measurement that acts as a key parameter for the rest of the Standard Model's framework.
An international team of more than 400 researchers—collectively known as the Collider Detector at Fermilab Collaboration—worked together to analyze almost ten years of data collected from Fermilab's now-defunct Tevatron particle accelerator in Batavia, Illinois. And they have found something peculiar: the W boson mass measurement they report in their new paper, published today in the journal Science, is approximately 0.1 percent heavier than previous estimates.
The researchers were able to measure the mass of the W boson by smashing beams of protons and antiprotons together in a vacuum. These collisions generate a slew of different particles, but rarely produce a W boson. "We are not able to measure the W boson directly, in a sense, because it decays incredibly fast—in something like a trillionth of a trillionth of a second," Kotwal explains.
So, the team must analyze the remnants of the W boson, the particles it leaves behind in its wake. But only certain combinations of leftover particles can give scientists the data they need. In particular, Kotwal and his colleagues sought out collisions that produced two specific pairs of particles: either a muon and a neutrino, or an electron and a neutrino. (Muons, you may know, are the much, much heavier subatomic cousins of electrons. Neutrinos, affectionately known as ghost particles, are electrically neutral and have an impossibly small mass. An electron is, well, an electron.) By measuring the position and energy of these particle pairs, the team was able to determine the mass of the decayed W boson.
It's an incredibly difficult task, though. Out of the roughly 450 trillion collisions that the team observed between 2002 and 2011, only about four million collisions generated enough high-quality data about the W boson.
From this data, they estimate the new mass measurement of the W boson to be 80,433.5 ± 9.4 MeV/c2—a far-cry (in the realm of quantum mechanics, that is) from previous measurements, and from what the Standard Model suggests it should be. It is the most precise measurement recorded yet, the team reports, roughly twice as precise as previous calculations. David Toback, a physicist at Texas A&M University and a co-spokesperson for the 400-person team, likens it to precisely measuring the weight of an 800-pound gorilla to within one ounce.
Now, it's up to the scientific community to figure out exactly what these findings mean. It could mean, for instance, that there are previously undiscovered particles waiting to be discovered, or physical interactions entirely new to science. "It's remarkable how resistant nature is to revealing her secrets," Toback tells Popular Mechanics. "It's a wonderful chase, but it's absolutely maddening."
The next step, of course, will be to perform even more experiments and get confirmation of this measurement from an independent source. Toback is hopeful that the CMS and ATLAS experiments at CERNS's Large Hadron Collider in Geneva, Switzerland—each of which rely on the participation of thousands of scientists—will provide even more data in the near future, and, if we're lucky, some new insight.
News
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]
Vision can be rebooted in adults with amblyopia, study suggests
Temporarily anesthetizing the retina briefly reverts the activity of the visual system to that observed in early development and enables growth of responses to the amblyopic eye, new research shows. In the common vision [...]
Ultrasound-activated Nanoparticles Kill Liver Cancer and Activate Immune System
A new ultrasound-guided nanotherapy wipes out liver tumors while training the immune system to keep them from coming back. The study, published in Nano Today, introduces a biodegradable nanoparticle system that combines sonodynamic therapy and cell [...]















