Innovative research into DNA nanotechnology has been submitted to the journal, Nanomedicine: Nanotechnology, Biology and Medicine, comprising intelligent aptamer-incorporated DNA nanonetwork (Apt-Nnes). This novel technology can be used for imaging cancers as well as for increased drug delivery of chemotherapeutics.
The Need for DNA Nanotechnology
Nanoscale materials, which include materials that are within the nanoscale of 1 and 100 nm in size, have gained traction with the integration of nanotechnology into biomedical research.
Nanomaterials such as nanoparticles and nanocarriers have proven to have great potential when delivering drugs to target sites as they allow increased precision of drug release with a high concentration in the target areas. This also reduces systemic effects including toxicity, which is a major concern for chemotherapy drugs used for cancer therapeutics. The biodistribution of these drugs is non-specific and can cause secondary medical issues such as the elimination of healthy cells and tissue, and even affect organ functioning.
While there have been nanomaterials developed for this application such as liposomes and nanoparticles, these can also be associated with obstacles and limitations including the requirement of extensive surface functionalization to aid targetability as well compatibility with the immune system.
These drawbacks have increased research into DNA nanotechnology. This sector has illustrated benefits such as higher suitability for use in vivo as well as a high level of programmability. These advantages have made DNA nanotechnologies like aptamers potentially more suitable for use in cancer diagnostics and therapeutics such as bioimaging, biosensors and drug carriers.
Aptamers
Aptamers can be described as being short single-stranded oligonucleotides, which are usually 20-60 nucleotides long, with the ability to bind to target molecules with a high level of specificity and affinity.
These DNA molecules can bind a wide range of targets such as simple inorganic molecules, large proteins, and cells, as well as being cheaper nucleotide analogues of antibodies. This can enable aptamers to be used as a more cost-effective alternative, with the added benefit of being easily produced and non-toxic.
Applications of aptamer within DNA nanotechnology have led to innovative research into its suitability for cancer research and therapy.
Innovative Research
The pre-print article submitted to the journal Nanomedicine: Nanotechnology, Biology and Medicine has undertaken research to develop a simplistic approach for constructing a versatile aptamer-incorporated DNA nanonetwork (Apt-Nnes) for carrying and delivering drugs with increased targetability.
This research has been developed for the application of carrying chemotherapy drugs such as doxorubicin (Dox), which can be loaded onto the Apt-Nnes carrier. This drug delivery carrier has a high cargo loading capacity as well as being suitable for biological systems without causing immunity issues or resulting in toxicity.
Additionally, the targetability of this DNA technology was tested for its potential use in cancer therapeutics by evaluating its specificity for the protein tyrosine kinase 7, which is overexpressed in T-cell acute lymphoblastic leukemia. The results of this research consisted of finding the binding affinity of this drug delivery carrier was heavily enhanced through the use of multivalent aptamers. Additionally, the structure itself was suitable for its purpose as its structural integrity was maintained in fetal bovine serum for eight hours.
The small size of this drug delivery carrier enables natural interaction with cancer cells, and this can allow its cancer-specific receptors to detect and enter cancer cells before releasing the chemotherapy drug with a high concentration within a localized area. Cytotoxicity within a localized tumor site using this DNA nanotechnology allow the preservation of heathy cells and tissue within the patient and this lack of systemic toxicity can allow patients to experience fewer adverse effects.
Future Outlook
Utilizing aptamers, this nano-based method can also enable a more patient-centered treatment approach, which can include potentially fewer chemotherapy treatment sessions, especially if sustained drug release can be enabled. The use of smaller doses of the chemotherapy drug is also a possibility with the drug being released in the target area, a larger dose is no longer required to ensure the site is reached. This can be beneficial for health care systems as the requirement of the overall drug treatment dose per patient is reduced and there this can be cheaper for the hospital, allowing the treatment of a larger number of patients.
The quality of life of these patients that are able to experience reduced toxicity is also a benefit of this novel approach and with further research, this research, while in its infancy, may be able to enter clinical practice and increase patient care.
News
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]















