MIT researchers have introduced an efficient reinforcement learning algorithm that enhances AI’s decision-making in complex scenarios, such as city traffic control.
By strategically selecting optimal tasks for training, the algorithm achieves significantly improved performance with far less data, offering a 50x boost in efficiency. This method not only saves time and resources but also paves the way for more effective AI applications in real-world settings.
AI Decision-Making
Across fields like robotics, medicine, and political science, researchers are working to train AI systems to make meaningful and impactful decisions. For instance, an AI system designed to manage traffic in a congested city could help drivers reach their destinations more quickly while enhancing safety and sustainability.
However, teaching AI to make effective decisions is a complex challenge.
Challenges in Reinforcement Learning
Reinforcement learning models, the foundation of many AI decision-making systems, often struggle when confronted with even slight changes in the tasks they are trained for. For example, in traffic management, a model might falter when handling intersections with varying speed limits, lane configurations, or traffic patterns.
To boost the reliability of reinforcement learning models for complex tasks with variability, MIT researchers have introduced a more efficient algorithm for training them.
Strategic Task Selection in AI Training
The algorithm strategically selects the best tasks for training an AI agent so it can effectively perform all tasks in a collection of related tasks. In the case of traffic signal control, each task could be one intersection in a task space that includes all intersections in the city.
By focusing on a smaller number of intersections that contribute the most to the algorithm’s overall effectiveness, this method maximizes performance while keeping the training cost low.
Enhancing AI Efficiency With a Simple Algorithm
The researchers found that their technique was between five and 50 times more efficient than standard approaches on an array of simulated tasks. This gain in efficiency helps the algorithm learn a better solution in a faster manner, ultimately improving the performance of the AI agent.
“We were able to see incredible performance improvements, with a very simple algorithm, by thinking outside the box. An algorithm that is not very complicated stands a better chance of being adopted by the community because it is easier to implement and easier for others to understand,” says senior author Cathy Wu, the Thomas D. and Virginia W. Cabot Career Development Associate Professor in Civil and Environmental Engineering (CEE) and the Institute for Data, Systems, and Society (IDSS), and a member of the Laboratory for Information and Decision Systems (LIDS).
She is joined on the paper by lead author Jung-Hoon Cho, a CEE graduate student; Vindula Jayawardana, a graduate student in the Department of Electrical Engineering and Computer Science (EECS); and Sirui Li, an IDSS graduate student. The research will be presented at the Conference on Neural Information Processing Systems.
Balancing Training Approaches
To train an algorithm to control traffic lights at many intersections in a city, an engineer would typically choose between two main approaches. She can train one algorithm for each intersection independently, using only that intersection’s data, or train a larger algorithm using data from all intersections and then apply it to each one.
But each approach comes with its share of downsides. Training a separate algorithm for each task (such as a given intersection) is a time-consuming process that requires an enormous amount of data and computation, while training one algorithm for all tasks often leads to subpar performance.
Wu and her collaborators sought a sweet spot between these two approaches.
Advantages of Model-Based Transfer Learning
For their method, they choose a subset of tasks and train one algorithm for each task independently. Importantly, they strategically select individual tasks that are most likely to improve the algorithm’s overall performance on all tasks.
They leverage a common trick from the reinforcement learning field called zero-shot transfer learning, in which an already trained model is applied to a new task without being further trained. With transfer learning, the model often performs remarkably well on the new neighbor task.
“We know it would be ideal to train on all the tasks, but we wondered if we could get away with training on a subset of those tasks, apply the result to all the tasks, and still see a performance increase,” Wu says.
MBTL Algorithm: Optimizing Task Selection
To identify which tasks they should select to maximize expected performance, the researchers developed an algorithm called Model-Based Transfer Learning (MBTL).
The MBTL algorithm has two pieces. For one, it models how well each algorithm would perform if it were trained independently on one task. Then it models how much each algorithm’s performance would degrade if it were transferred to each other task, a concept known as generalization performance.
Explicitly modeling generalization performance allows MBTL to estimate the value of training on a new task.
MBTL does this sequentially, choosing the task which leads to the highest performance gain first, then selecting additional tasks that provide the biggest subsequent marginal improvements to overall performance.
Since MBTL only focuses on the most promising tasks, it can dramatically improve the efficiency of the training process.
Implications for Future AI Development
When the researchers tested this technique on simulated tasks, including controlling traffic signals, managing real-time speed advisories, and executing several classic control tasks, it was five to 50 times more efficient than other methods.
This means they could arrive at the same solution by training on far less data. For instance, with a 50x efficiency boost, the MBTL algorithm could train on just two tasks and achieve the same performance as a standard method which uses data from 100 tasks.
“From the perspective of the two main approaches, that means data from the other 98 tasks was not necessary or that training on all 100 tasks is confusing to the algorithm, so the performance ends up worse than ours,” Wu says.
With MBTL, adding even a small amount of additional training time could lead to much better performance.
In the future, the researchers plan to design MBTL algorithms that can extend to more complex problems, such as high-dimensional task spaces. They are also interested in applying their approach to real-world problems, especially in next-generation mobility systems.
Reference: “Model-Based Transfer Learning for Contextual Reinforcement Learning” by Jung-Hoon Cho, Vindula Jayawardana, Sirui Li and Cathy Wu, 21 November 2024, Computer Science > Machine Learning.
arXiv:2408.04498
The research is funded, in part, by a National Science Foundation CAREER Award, the Kwanjeong Educational Foundation PhD Scholarship Program, and an Amazon Robotics PhD Fellowship.
News
According to Researchers, Your Breathing Patterns Could Hold the Key to Better Memory
Breathing synchronizes brain waves that support memory consolidation. A new study from Northwestern Medicine reports that, much like a conductor harmonizes various instruments in an orchestra to create a symphony, breathing synchronizes hippocampal brain waves to [...]
The Hidden Culprit Behind Alzheimer’s Revealed: Microglia Under the Microscope
Researchers at the CUNY Graduate Center have made a groundbreaking discovery in Alzheimer’s disease research, identifying a critical link between cellular stress in the brain and disease progression. Their study focuses on microglia, the brain’s immune [...]
“Mirror Bacteria” Warning: A New Kind of Life Could Pose a Global Threat
Mirror life, a concept involving synthetic organisms with reversed molecular structures, carries significant risks despite its potential for medical advancements. Experts warn that mirror bacteria could escape natural biological controls, potentially evolving to exploit [...]
Lingering Viral Fragments: The Hidden Cause of Long COVID
Long COVID, affecting 5-10% of COVID-19 patients, might be caused by the enduring presence of the virus in the body. Research suggests that viral fragments, possibly live, linger and lead to symptoms. Addressing this involves antiviral treatments, enhanced [...]
Hidden Scars: How COVID Lockdowns Altered Teen Brains Forever
Research from the University of Washington revealed that COVID-19 lockdowns led to accelerated cortical thinning in adolescents, impacting brain development significantly. This effect was more pronounced in females than males, raising concerns about long-term brain health. The study [...]
Simple Blood Test To Detect Dementia Before Symptoms Appear
UCLA researchers have identified placental growth factor (PlGF) as a potential blood biomarker for early detection of cognitive impairment and dementia. High PlGF levels correlate with increased vascular permeability, suggesting its role in the development [...]
Investing Goldman Sachs asks ‘Is curing patients a sustainable business model?’
Goldman Sachs analysts attempted to address a touchy subject for biotech companies, especially those involved in the pioneering “gene therapy” treatment: cures could be bad for business in the long run. “Is curing patients [...]
The risks of reversed chirality: Study highlights dangers of mirror organisms
A groundbreaking study evaluates the feasibility, risks, and ethical considerations of creating mirror bacteria with reversed chirality, highlighting potential threats to health and ecosystems. In a recent study published in Science, a team of researchers [...]
Alarming Mutation in H5N1 Virus Raises Pandemic Red Flags
NIH-funded study concludes that the risk of human infection remains low A recent study published in Science and funded by the National Institutes of Health (NIH) has found that a single alteration in a protein on the surface [...]
Scientists Discover Genetic Changes Linked to Autism, Schizophrenia
The Tbx1 gene influences brain volume and social behavior in autism and schizophrenia, with its deficiency linked to amygdala shrinkage and impaired social incentive evaluation. A study published in Molecular Psychiatry has linked changes in brain [...]
How much permafrost will melt this century, and where will its carbon go?
Among the many things global warming will be melting this century—sea ice, land glaciers and tourist businesses in seaside towns across the world—is permafrost. Lying underneath 15% of the northern hemisphere, permafrost consists of [...]
A Physics Discovery So Strange It’s Changing Quantum Theory
MIT physicists surprised to discover electrons in pentalayer graphene can exhibit fractional charge. New theoretical research from MIT physicists explains how it could work, suggesting that electron interactions in confined two-dimensional spaces lead to novel quantum states, [...]
Inside the Nano-Universe: New 3D X-Ray Imaging Transforms Material Science
A cutting-edge X-ray method reveals the 3D orientation of nanoscale material structures, offering fresh insights into their functionality. Researchers at the Swiss Light Source (SLS) have developed a groundbreaking technique called X-ray linear dichroic orientation tomography [...]
X-chromosome study reveals hidden genetic links to Alzheimer’s disease
Despite decades of research, the X-chromosome’s impact on Alzheimer’s was largely ignored until now. Explore how seven newly discovered genetic loci could revolutionize our understanding of the disease. Conventional investigations of the genetic contributors [...]
The Unresolved Puzzle of Long COVID: 30% of Young People Still Suffer After Two Years
A UCL study found that 70% of young people with long Covid recovered within 24 months, but recovery was less likely among older teenagers, females, and those from deprived backgrounds. Researchers emphasized the need [...]
Needle-Free: New Nano-Vaccine Effective Against All COVID-19 Variants
A new nano-vaccine developed by TAU and the University of Lisbon offers a needle-free, room-temperature-storable solution against COVID-19, targeting all key variants effectively. Professor Ronit Satchi-Fainaro’s lab at Tel Aviv University’s Faculty of Medical and [...]